
Final Project Documentation
Table of Contents
Table of Contents 1

Team Information 2

Project Description 2

IoT System 3
Sensors 3
Cloud to Device 4

Communication method for controlling actuators 4
Why this method was chosen over other options 4
Message formatting for actuators 4
Examples 4

Contributions 5
Getting Started 6

Command Line Arguments 6
Running without a Raspberry Pi 6

Mobile App 7
App Purpose 7
App Functionality 7

Login Page 7
Dashboard Page 7
Details Page 7
Telemetry Form Page 8
Location Page 8

OOP Design 8
SensorRecord 8
SensorEntry 8
Payload 8
UML Diagram 8

App Snapshots 9
Contributions 15
Future Work 16
Google Maps API Constraints 16

Test Payload 17

Team Information
Team Name: Grass Touchers

Team Number: 2

Members:
Magnus Bigras �1840918�
Nicholas Chudinov �1423131�
Maxence Roy �1957042�
Liam Scalzulli �1947334�

Project Description
The goal of this project was to implement all the necessary software that managers or
farmers required in order to run a container farm. The hardware was divided into three
different subsystems: plants/farming, geolocation and security. The plant subsystem is
mainly focused on everything that has to do with things that can affect the crops such as:
the climate in the container, the soil moisture and the level of light. The geo location
subsystem focuses on tracking the position of the container, whether it is placed on a
sturdy base and if the container has been shaken or bumped which could cause potential
issues to the farm. The security subsystem focuses on monitoring who accesses the
container, using the hardware to avoid possible break-ins. The hardware collects data
from sensors, though so hardware items can also be controlled such as: lights, fans or
even the lock of the container.

Alongside the hardware, our team has developed an application. This provides farmers
and managers an easy and practical way to see the data sent by sensors, they can also
view the state of actuators. Within the app, users can easily control these actuators,
allowing them to easily shut off or turn on devices.

IoT System

Sensors

PIR Motion Sensor
Pin: D16

Magnetic Door Sensor Reed Switch
Pin: D5

MG590S 180 Micro Servo
Pin: PWM

Sound Sensor/Noise Detector
Pin� ADC 0

GPS�Air530�
Pin: UART

Water Level Sensor
Pin: ADC 4

Soil Moisture Sensor
Pin: ADC 2

Chainable RGB LED
Pin: D22
RX � GPIO pin 22
TX � GPIO pin 23

Cooling FAN
Pin: D18

AHT20 Temp & Humidity Sensor
Pin: I2C bus 4

Cloud to Device

Communication method for controlling actuators

To control our actuators we have chosen to use a set of Direct Methods.

Why this method was chosen over other options

Direct methods were chosen as our group believed that it was the simplest solution. The
method could be sent from the azure portal and the request-response nature of a direct
method made it easy to test. With direct methods all that was required was implementing
a handler for requests that would call upon one of the methods for the actuators, passing
in an argument for that actuator’s state. We also had to create a format for our request,
which basically included the desired state of the actuator.

Message formatting for actuators

To communicate with the actuators, a payload needs to be passed. This payload must
contain the desired state of the actuator example (on/off).

Examples

Command Description Payload Expected
Arguments

Example

fan Control the state
of the fan

{‘state’ : arg} ‘on’ / ‘off’ {‘state’ : ‘on’}

lock Control the state
of the lock

{‘state’ : arg} ‘open’ / ‘closed’ {‘state’ :
‘closed’}

buzzer Control the state
of the buzzer

{‘state’ : arg} ‘on’ / ‘off’ {‘state’ : ‘on’}

light Control the state
of the light

{‘state’ : arg} ‘on’ / ‘off’ {‘state’ : ‘on’}

Contributions

Team Member Contributions

Magnus Bigras Milestone 1� Developed team contract and plan for the project
Milestone 2� Responsible for writing the scripts for collecting
data and controlling actuators from the security subsystems
Milestone 3� Sending security telemetry to IOT Hub and desired
properties.
Milestone 4� Reported properties, fixing bugs, helping integrate
all the subsystems into one script, direct methods.
Milestone 5� Cleaning up code, separating classes into separate
modules and documentation

Maxence Roy Milestone 1� Wrote team contract, Created the Jira board and
added epics and user stories, Programmed plant subsystem
sensors
Milestone 2� Made plant subsystem class
Milestone 3� Code review, Implemented plant subsystem to
collective class
Milestone 4� Code review
Milestone 5� Made the payload send all entries at once instead
of individually, Added ‘dummy’ argument to send data for each
subsystem without hardware, Made it so all entries are sent by
default (if no specific entry is specified), Changed binary entries
to send more specific data like ‘on’ and ‘off’ instead of True and
False, Completed the ‘Getting Started’ section of the document

Nicholas
Chudinov

Milestone 1� Helped with the team contract
Milestone 2� Made the GPS subsystem scripts and got the GPS
data running
Milestone 3� Modified the scripts to have the suggested
changes as well as Code Cleanup
Milestone 4� Code Cleanup

Liam Scalzulli Milestone 1� Did everything in a different group (wireframing,
team contract, jira board, readme).
Milestone 2� Implemented the geo-location subsystem, read and
outputted all required data.
Milestone 3� Implemented sending data to IOT hub and
controlling desired properties in the geo-location subsystem.
Milestone 4� Combined all subsystems into a single python
script, added direct method and desired property handlers
Milestone 5� Minor bug fixes and code cleanup

Getting Started

Run farm.py to connect your device to IoTHub and start sending data.

Every library that cannot be installed with pip3, such as chainable_rgb_direct, is provided
in the Hardware folder.

Command Line Arguments

--dummy: Send dummy data to IoTHub without using any hardware component (prevents
relying on hardware)

--all: Send all data at once (this is automatically done when running without specifying
any sensors)

Arguments for specific sensors: --angles, --buzzer, --door, --fan, --gps, --light, --lock,
--luminosity, --moisture, --motion, --noise, --temp_humi, --vibration, --water

--verbose: Add tracebacks to error messages

Running without a Raspberry Pi

With dummy data, it is possible to use farm.py from any device. To run python scripts on a
Windows computer, you must complete the following steps.

- Install python if not already done
- Add the python folder location in your Path environment variable
- Install ms-python.python and tht13.python and formulahendry.code-runner

extensions on Visual Studio Code
- Restart your computer
- You should now be able to run farm.py from the command line or powershell by

calling ‘python .\farm.py --dummy’

https://www.python.org/downloads/

Mobile App

App Purpose

The purpose of our application is to provide a user interface where farm technicians and
fleet managers can remotely track the status of all their respective sensors in real time.
The app also allows the users to change the state of their actuators and telemetry
interval. Finally, it contains a page to let the fleet manager track the location of their
subsystem on a map.

App Functionality

Login Page

The login page lets the user select which dashboard they want to access: farm technician
or fleet manager. Selecting either one will navigate to the

Dashboard Page

This page loads different records depending on the dashboard type selected on the login
screen. It displays every record desired and updates them in real-time. Clicking any
record navigates to the details screen. On top of the page the user can select an actuator,
type a desired state, and click ‘Run’ to run a direct method which updates the specified
actuator remotely. There is also a toolbar item with an ‘upload’ symbol. Clicking it
navigates to the telemetry form page. If the fleet manager dashboard is being displayed,
there is a second toolbar item with a ‘globe’ symbol. Clicking it navigates to the Location
page. Finally, at the bottom of the page, it is indicated whether the app is currently
connected to the internet or not to let the user know if their records are being updated.

Details Page

This page displays information about a desired record. On top, a graph is displayed
showing the last 8 values sent. At the bottom, the user can scroll through the list of every
value sent, with the latest one on top. The graph and value list update in real-time.

Telemetry Form Page

This page allows the user to change the frequency at which their subsystem sends
telemetry data. To do so, they simply need to type a new value and click the ‘Update’
button.

Location Page

This page displays a Google map centered on the current location of the geo-location
subsystem (based on the latest latitude and longitude data). A pin highlights the
subsystem location.

Note: The Google map will only load on an Android device that meets certain conditions.
See the ‘Google Maps API Constraints’ on the Mobile App section.

OOP Design

SensorRecord

This class represents a record of entries for a field. Its purpose is to store a list of every
value sent by IoTHub for a single field.

SensorEntry

This class represents a value sent at a certain time. Its purpose is to be collected by a
SensorRecord and represent a temporary value for a field.

Payload

This class represents the raw keys and values sent by a IoTHub payload. Its purpose is to
easily parse the string data received into a usable SensorEntry.

UML Diagram

The UML Diagram is too large to display clearly on the document. To see it, open the
JPEG file named UML.jpeg in the root of the GitHub repo.

App Snapshots

Login Page

Farm Technician and Manager Dashboard Pages

Details Page examples

Selecting an Actuator / Trying to run a Direct Method with an invalid state

Telemetry Interval Page / Empty Dashboard Page

Location Page / Trying to open the location page with no latitude and longitude record

Contributions

Team Member Contributions

Magnus Bigras Milestone 2� Created original Viewmodels, models, repos,
security dashboard, login page and basic navigation.
Milestone 3� Created the entry model / entry records classes,
using what our team decided to use in our payload. Designed
the logic for allowing this one model to accommodate all three of
our subsystems.
Milestone 4� Wrote the project documentation, created the class
UML diagrams and coded the logic for allowing users to change
the telemetry interval through the app

Maxence Roy Milestone 1� Wrote team contract, Created the Jira board and
added epics and user stories
Milestone 2� Reviewed code quality (added XML comments and
headers), Recorded the demo video
Milestone 3� Code review
Milestone 4� Revamped ViewModels, Refactored user roles,
Details view �Graph and entry list), Added Location page,
Implemented auto refresh for Dashboard and Details screen,
Polished the design (ie added app icon, images for toolbar,
reorganizing controls on the dashboard), Added popup message
to show direct method result, Remade the UML diagram,
Completed the ‘App Purpose’, ‘App Functionality’, ‘OOP Design’,
and ‘Test Payload’ sections of the document

Nicholas
Chudinov

Milestone 1� Did the designing and wireframing of the app
Milestone 2� Created the App UI for dashboards, login and
details based off of the wireframe
Milestone 3� Designed the whole UI side of the project as well as
formatted the incoming data to display for the user. Formatted
some code for the app and bug fixes overall.
Milestone 4� Code cleanup

Liam Scalzulli Milestone 1� Did everything in a different group (wireframing,
team contract, jira board, readme)
Milestone 2� �Late integration into this team) Implemented
navigation for the app, also the geo-location subsystem.
Milestone 3� Added functionality for reading and deserializing
data from Azure Event Hubs in the mobile app.
Milestone 4� Added functionality for controlling actuators in the
app, minor refactors and bug fixes.

Future Work

Here are the list of features we would like to implement if time permits:

● Device notification: Include a label that mentions if the device is currently online
(actively sending data or not)

● Actuator state dropdown: Instead of making the user type the new state for an
actuator, make them select the state from a dropdown for convenience

● Customizable Dashboard tiles: Allowing users to modify the size, color and shape
of tiles on their dashboard.

● Storage: Obtain IOT telemetry data from blob storage, then display past data in
the app.

● User Authentication: Having accounts for our two types of user roles (managers
and farmers), logging in via Google

● Sharing: Allow users to easily copy and send sensor data �SMS, Email, ect…)
● Security notification: Highlight records that exceed a certain threshold. Receive

notifications and emails when it happens.
● Auto-refresh map: Have the Location Page automatically update every time new

GPS data is sent
● Expanded design: Adding a custom UI style to the full app (like dark mode)

Google Maps API Constraints

To access the Google map on the Location page, the Android device must have the
Google Services SDK installed.

On top of this, the user must retrieve a SHA�1 certificate fingerprint from their device,
send it to the Google Maps API owner (in this case, Maxence) and then the owner must
add that key to their list of allowed devices.

Source:
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obt
aining-a-google-maps-api-key

Aside from this, the application does not need any prior modification to run properly.

https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key

Test Payload
Note: Dummy test data can be sent by running farm.py with the --dummy argument. See
the ‘Getting Started’ section for Hardware.

[

{'SubSystem': 'location', 'Field': 'pitch', 'Value': '4.379662128747901', 'EntryDate': '05/24/2022,

16:30:04'},

{'SubSystem': 'location', 'Field': 'roll', 'Value': '206.2093777328896', 'EntryDate': '05/24/2022,

16:30:04'},

{'SubSystem': 'security', 'Field': 'buzzer', 'Value': 'on', 'EntryDate': '05/24/2022, 16:30:04'},

{'SubSystem': 'location', 'Field': 'buzzer', 'Value': 'on', 'EntryDate': '05/24/2022, 16:30:04'},

{'SubSystem': 'security', 'Field': 'door', 'Value': 'open', 'EntryDate': '05/24/2022, 16:30:04'},

{'SubSystem': 'plant', 'Field': 'fan', 'Value': 'off', 'EntryDate': '05/24/2022, 16:30:04'},

{'SubSystem': 'location', 'Field': 'latitude', 'Value': '-1.1747667677956173', 'EntryDate':

'05/24/2022, 16:30:04'},

{'SubSystem': 'location', 'Field': 'longitude', 'Value': '-27.120174309568533', 'EntryDate':

'05/24/2022, 16:30:04'},

{'SubSystem': 'plant', 'Field': 'light', 'Value': 'off', 'EntryDate': '05/24/2022, 16:30:04'},

{'SubSystem': 'security', 'Field': 'lock', 'Value': 'closed', 'EntryDate': '05/24/2022, 16:30:04'},

{'SubSystem': 'security', 'Field': 'luminosity', 'Value': '6027.381584400036', 'EntryDate':

'05/24/2022, 16:30:04'},

{'SubSystem': 'plant', 'Field': 'moisture', 'Value': '181.0367148209547', 'EntryDate': '05/24/2022,

16:30:04'},

{'SubSystem': 'security', 'Field': 'motion', 'Value': 'detected', 'EntryDate': '05/24/2022,

16:30:04'},

{'SubSystem': 'security', 'Field': 'noise', 'Value': '542.6282268368966', 'EntryDate': '05/24/2022,

16:30:04'},

{'SubSystem': 'plant', 'Field': 'temperature', 'Value': '14.954746520733263', 'EntryDate':

'05/24/2022, 16:30:04'},

{'SubSystem': 'plant', 'Field': 'humidity', 'Value': '67.64603951971893', 'EntryDate': '05/24/2022,

16:30:04'},

{'SubSystem': 'location', 'Field': 'vibration', 'Value': '155.0604756599238', 'EntryDate':

'05/24/2022, 16:30:04'},

{'SubSystem': 'plant', 'Field': 'water', 'Value': '67.5364057973784', 'EntryDate': '05/24/2022,

16:30:04'}

]

